肿瘤学多组数据分析的新时代

写的:

理查德·古德温

影像高级总监 & 数据分析,临床药理学 & 安全科学,澳门葡京网赌游戏

西蒙·巴里

澳门葡京网赌游戏早期肿瘤学生物科学执行董事

增进澳门葡京赌博游戏对疾病生物学的理解, we are using the power of multi-omics to gain novel insights into the molecular changes that underpin cancer, 以及对治疗的反应. 通过结合不同的“组学”——比如基因组学, metabolomic and proteomic information – our ambition is to improve patient selection in clinical trials, 发展靶向治疗,推进精准医疗.

什么是多组学数据?

为了理解一个综合体, 异质性疾病,如癌症, 澳门葡京赌博游戏需要全面了解它的生物学. Multi-omics 是一种强大的预测和诊断方法吗, which is helping us achieve just this by bringing together multiple complex ‘omics’ datasets, which machine learning and AI can translate into meaningful biological insights.1,2

肿瘤学R&澳门葡京网赌游戏的博士, we use multi-omic imaging in pre-clinical discovery to influence clinical decision making and inform patient selection. It is already helping our scientists understand drug responses and will allow physicians to select patients most likely to respond to treatment.

出于这个原因, we are in the process of embedding our multi-omic platform across our AstraZeneca pipeline, 以获得对澳门葡京赌博游戏的药物如何起作用的新见解, 并最终为患者带来新的精准药物.

重要的是, our approach allows us to continue to layer in more complexity from new analytical sources so we can delve even deeper into the underlying mechanisms of cancer and other disease biology.

通过成像捕获多组学数据

传统方法使用处理过的整个组织进行分析 高级分子成像 技术可以分析完整组织中的单个细胞, 使用所谓的空间多组学分析.3 以这种方式, 可以捕获高分辨率的多组成像数据, 一个像素一个像素地穿过组织, and added into a combined dataset to create a richer map of disease biology.3

为了获得更深刻的洞察力, we are pioneering multi-omic imaging by combining multiple datasets to analyse each tissue sample. 例如,在澳门葡京赌博游戏发表于 自然的新陈代谢, mass spectrometry and spatial transcriptomics revealed functional changes in breast cancer tissue driven by the myc 吉恩,一个已知的肿瘤驱动者.4,5

通过分析完整组织切片内的蛋白质组和转录组, spatial multi-omics revealed that depriving human and mouse mammary tumours of vitamin B5 reduces their growth – an insight that may be useful in developing cancer therapies in the future.4



癌症代谢组织成像的先驱

在过去十年中, novel tissue imaging methods such as mass spectrometry imaging (MSI) have been developed, with which we are now able to monitor drug distribution, metabolism and delivery as they happen6, a leap forward from traditional methods that can only capture the final response to treatment.

用MSI, we can image thousands of metabolites in preclinical and clinical studies across each tissue, 以及药物的浓度和分布. These data can be combined with other multi-omic datasets to generate new insights into the relationship between tumour drivers, 肿瘤代谢, 以及治疗反应, 也可以识别潜在的新疾病生物学.

例如,在澳门葡京赌博游戏发表于 自然的新陈代谢, multimodal mass spectrometry-based metabolomics and imaging mapped the impact of common genetic drivers of colorectal cancer on intestinal metabolism.7

通过捕捉健康细胞和癌细胞之间的差异, we were able to detect genotype-dependent metabolic changes and identify that targeting a key metabolic pathway has potential future therapeutic value for colorectal cancer.7



Metabolic imaging technologies can also be used to characterise metabolic pathways in patients, 补充其他组学方法的见解.8 澳门葡京赌博游戏的合作研究 美国国家科学院院刊 代表首次空间代谢组学, 转录组学和免疫组织化学用于预测, 然后机械地解释, the risk of disease reoccurrence in patients who have had surgery for prostate cancer.9

这是对前列腺癌进展的新见解, and could become a future non-invasive approach to rapidly assess patient tumours.9



多组学的未来

除了肿瘤研究, we are beginning to apply multi-omic imaging technology across other disease areas at AstraZeneca, 包括心血管, 肾脏和代谢性疾病, 呼吸系统和免疫相关疾病, 神经科学与罕见病.  

As our understanding of the molecular changes that underpin disease 以及对治疗的反应 improves, so will our ability to develop precision medicines that target the right medicine, 给正确的病人, 在适当的时候.

多组学技术正在迅速发展, 澳门葡京赌博游戏为它们改变药物开发的潜力感到兴奋, 并帮助带来新的, 针对患者的药物.


主题:



你可能也喜欢

参考文献。

1. 胡毅,等. 单细胞多组学技术:方法与应用. 细胞与发育生物学前沿. 2018;6:28.

2. Acosta J.N,等. 多模式生物医学人工智能. 自然医学. 2022;28:1773–1784.

3. Park J,等. Spatial omics technologies at multimodal and single cell/subcellular level. 基因组生物学. 2022;23:256.

4. Kreuzaler P,等. Vitamin B5 supports MYC oncogenic metabolism and tumour progression in breast cancer. 自然的新陈代谢. 2023;5:1870-1886.

5. Dhanasekaran R等. The MYC oncogene — the grand orchestrator of cancer growth and immune evasion. 临床肿瘤学. 2022;19:23–36.

6. 朱鑫,等. MALDI质谱成像单细胞和组织的研究进展. 化学前沿. 2022;9:782432.

7. Vande Voorde J,等. Metabolic profiling stratifies colorectal cancer and reveals adenosylhomocysteinase as a therapeutic target. 自然的新陈代谢. 2023;5:1303-1318.

8. 赛斯·南达C等. 定义肿瘤的代谢图景:基因组与代谢相遇. 英国癌症杂志. 2020;122:136–149.

9. Sushentsev N等. Imaging tumor lactate is feasible for identifying intermediate-risk prostate cancer patients with post-surgical biochemical recurrence. 美国国家科学院院刊. 2023;120:e2312261120.


Veeva ID: Z4-58940
筹备日期:2023年11月